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Detection and classification of nonlinear dynamic switching events
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A method is proposed for detecting chaotic switching events. Switching events are classified by the time of
the event and by parameter value. Classifications are based on the density of localized dynamics about a test
trajectory. This method is shown to be successful in tracking short-time parameter modulation and hypercha-
otic key shifting used in otherwise secure communications.
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The parametrization of a system abruptly changes t
new parametrization during a chaotic switching event. T
reveals a sudden change in the system dynamics. S
changes can be subtle, as with chaotic shift key cryp
graphic systems@1#, or substantial with the possibility o
bifurcation or phase transition, as in the case of biologi
@2#, electronic@3#, or mechanical systems@4#. The detection
and classification of switching events is integral to the u
derstanding of nonstationary systems and deriving appl
tions from those systems. For example, classifying pat
logical cardiac rhythms relies on the detection of distinct
changes in electrocardiographic signals@2#, and the onset of
a mechanical malfunction can be detected from changes
machine’s dynamic performance@4#.

A wide variety of techniques have been developed to c
sify the dynamics of a system. A small cross section of th
techniques includes unstable periodic orbits@5#, clustering of
dynamical similarity measures@6#, chaotic synchronization
@1#, fuzzy logic @7#, and spectral analysis@8#. Classification
methods are often based on calculating a small numbe
statistical quantities that summarize the global behavior
the system thereby eliminating any chance of temporal re
lution. Only a small subset of such classification techniq
are suitable for the temporal localization of a switching ev
and for the classification of new parametrizations. This s
set of techniques is successful at localizing switching eve
but they have not been demonstrated to track a wide rang
parameters. They also lack the ability to detect switching
high-dimensional systems.

A method is proposed which lends itself to the detect
of a wide range of possible parametrizations and to the
tection of slight dynamical differences. Rather than relyi
on summary statistical information, all of the available da
is utilized to develop a model of an attractor’s localized d
namics. Two characteristic features of an attractor are m
eled with this method:~1! the density of state space points
a bounded region of state space and~2! the vector field
which threads these states together into dynamical traje
ries. We refer to this model as a weighted density of st
model. Hivelyet al. utilized visitation frequencies of a sys
tem’s symbolic dynamics to detect dissimilarities betwe
parameterizations@9#. Multidimensional probability distribu-
tions of delay vector sets were used by Dikset al. to deter-
mine if two time series had been generated by the sa
system@10#. One drawback of these approaches concerns
need for long time series segments to measure a dissimil
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or distance between attractors thereby making them uns
able for chaotic switching detection. The methodologies a
do not utilize the information about the dynamics contain
in the vector field. This hinders comparisons between attr
tors which essentially fill the same bounded region of st
space but may differ dynamically.

The approach used in this study models the localized
namics within a collection of attractors with switching b
tween attractors. The main objective behind a weighted d
sity of state model is to use all available system data
capture the behavior of the localized dynamics on the att
tor. In particular, the model captures the continuous variat
of density across the states comprising the attractor i
bounded region of state space and estimates the vector
that links these states together into trajectories.

Such a model forms the foundation for the ability to me
sure similarities between the localized dynamics of two s
tems. There are two steps in creating a weighted den
of state model. The first step requires the formulation o
normalized density model of an attractor using either
full state vectors, or reconstructed state vectors, as
n-dimensional points in a kernel density estimate. There a
number of ways to create reconstructed vectors from sc
or multivariate time series data. Typically, time delayed v
ues of a sampled continuous scalar signalxt are used to form
a state vectorai5@xi ,xi 2t , . . . ,xi 2t(n21)# where the delay
t is some positive integer number. The timet and sample
index i are related byi 5(t2t0)Ds11 whereDs is the sam-
pling rate andt0 is the sampling start time. The dimensionn
has to be large enough to provide a proper reconstruction
unfolding, of the dynamics. General rules for dimension
n>2db11 @11# andn.dc @12# wheredb anddc are the box
counting and correlation dimension, respectively.

In the second step the vector fieldvai
is estimated at each

state space pointai . A simple approximation takes the lin
segment connecting the point in question to the next poin
the trajectory translated to zerovai

5ai 112ai . The magni-
tude is calculated as the distance between the two po
ivai

i5iai 112ai i and the direction is defined by the coord

nates ofvai
.

Given M samples of a test signalyt , a trajectory
bj 511t(n21)

M is constructed with the same reconstruction p
rameters,t and n, used in forming the weighted density o
state model forxt . Note that it is assumed that the samplin
rates forxt and yt are the same. Weighted densities can
©2002 The American Physical Society02-1
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determined at each point along the trajectory by usin
modified kernel density estimate

f̂ ~bj !5
1

@N2t~n21!#hn (
i 511t(n21)

N

wi j K~ui j !, ~1!

where h is the kernel bandwidth parameter andui j 5(bj
2ai)

T(bj2ai)/h
2. The weightwi j is defined as the normal

ized dot product of the vector fields

wi j 5
vai

ici j i
•

vbj

ici j i
5

ivai
i

ici j i

ivbj
i

ici j i
cosu, ~2!

where the normalizationici j i5max(ivai
i ,ivbj

i) making the

weight bounded,wi j <61. The two attributes of a vector
length and direction, appear in the weighting factor in E
~2!. Each is an independent way of filtering out neighbori
points which would otherwise contribute to the densi
Weighting the individual density contributions reinforces t
notion that each point in the test trajectory measures the l
density of similar dynamics, and not just the presence
nearby state space points.

For this study the radially symmetric multivaria
Epanechnikov joint probability function is used as the ker
@13#. Because it has finite support the resulting density d
tribution is bounded. The kernel is defined as

K~u!5H ~2cn!21~n12!~12u! if u,1

0 otherwise,
~3!

wherecn is the volume of the unit sphere inn space.
A variety of techniques have been developed for selec

an ‘‘optimal’’ bandwidth h. Despite their different ap-
proaches, each method shares the same trade-off of und
oversmoothing the density estimate when too small or
large a bandwidthh is used. This trade-off also applies
weighted density of state models. For weighted density
state models the objective is to find the localized den
around each point in a trajectory such that, on average, t
is a nonzero density between nearby orbits. Too sma
bandwidthh can leave the density contributions of near
and dynamically relevant trajectories out of range. Too la
a bandwidthh will cause distant and less dynamically re
evant trajectories to contribute to a query of an attracto
localized density. To accommodate these competing conc
the bandwidthh is calculated as the average Euclidean d
tance betweenk nearest neighbors which are not neighbo
on the same trajectory segment. The valuek is an empirically
derived number. The best models use a smallk value thereby
minimizing the overlap with one another if two models ha
differing support in reconstruction space. However, if t
dynamics are switched at relatively short time intervals,
trajectories will often reside in attractor basins rather than
the attractor itself. In this case, too small a bandwidthh, or
number of nearest neighborsk, will result in a large fraction
of zero density values. The ‘‘optimal’’ choice for the numb
of neighborsk is therefore application dependent and is d
rived heuristically.
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Weighted density of state models were developed a
means of detecting switching events induced by changes
known set of parametrizations. Let it be given that a scala
multivariate signal from a system is known to be operat
within a bounded region of parameter space comprised
set of parametrizations$p%. The goal is to detect transition
between parametrizations,pn→pm , by finding which se-
quence of weighted density of state models best match
sequence of dynamical behaviors exhibited by the test sig
Detection and classification of a switching event relies
gathering evidence of which reconstruction space, i.e.,
rametrization, has the highest total density of similar dyna
ics to a test trajectory. The measurement is relative beca
the outcome relies on comparing the densities found for e
weighted density of state model. Parameter classificati
are made by taking the maximum likelihood of a movin
average ofm density values or the center of mass of dens
values. The center of mass, for a distribution of density v
ues in parameter space for a pointbj on the trajectory,

p̂j5
(

p

f̂ p~bj !p

(
p

f̂ p~bj !

, ~4!

is used when a large set of parametrizations$p% is being
explored and when the distance between parametrization
small. The dynamics exhibited by nearby parametrizatio
can be very similar in the structurally stable sense, i.e.,
tractors within the set are topologically conjugate@14#.

The time of the switching event is centered about
point where half of the time series data used in the mov
average would be halfway in each parametrization. For
ample, with a delay coordinate spanning (n21)t sample
points and a moving average ofm density values, the moving
average would be centered around the pointi 85 i 1@(n
21)t1m#/2 wherei is the earliest time sample used in th
delay coordinate.

As a first demonstration of this methodology, we studi
the Lorenz equation with a time-varying parametrizatio
The Lorenz equation@15#

u̇5210~u2v !,

v̇5ctu2v220uw,

ẇ5uv22.666 666 666 6w, ~5!

was made nonstationary by a stepped gain coefficienct
5@65120 sin(4p bt/2c/80)#. The unknown signalyt was
taken as the scalar signalu sampled atDs5100 samples per
second withtP@0,80# and initial conditions$1,1,1% ~see Fig.
1!. Weighted density of state models were built for the p
rametrizationsp5$c%5$25,26, . . . ,90% using the last 12 000
points of u from tP@0,130# from each initial condition
$3,1,k%, k51,2, . . .,10. The same reconstruction param
eters,t57, n514, andh56.0, were used for each mode
Because only local densities were measured, the ‘‘curse
2-2
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dimensionality’’ does not apply. The attractor and, at sma
scales, trajectory bundles form a compact subspace w
this high dimension. A high dimension insured that simi
dynamics remained close where dissimilar dynamics,
false neighbors, diverged. The bandwidthh was chosen heu
ristically as the mean distance of the twelfth nearest neigh
for c590, the largest attractor in terms of support. For co
parison the mean distance forc525 was approximately 2.

Using the same reconstruction parameters, the test si
yt was transformed into a trajectorybj in this reconstruction
space. Using Eq.~1!, weighted densities were determined f
each point in the reconstructed trajectory for each model
sulting in 66 time series of density values. A moving avera
of 50 center of mass estimates@Eq. ~4!#, is displayed in Fig.
2. Figure 2 demonstrates that the estimationct8 closely fol-
lows the true parametrizationct with estimation errors
closely scattered aboutct . These errors are caused by t
trajectory taking time to converge to a new attractor af
each switching event. With a relatively small shifting peri

FIG. 2. Weighted density of state models were used to estim
the sinusoidally varying parameterct using the center of mass ap
proach in Eq.~4!. ct and ct8 are denoted by black and gray line
respectively.

FIG. 1. State space of Lorenz system with sinusoidally vary
parameterct . The state variableu was used as the unknown sign
yt .
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of 2 s the trajectory spent a relatively long time in the ba
of the attractors it converged to after each switching eve
Errors arise because neighboring attractors can occupy
others basin of attraction. This was best illustrated in
beginning with the estimations generated after the initiali
tion of the trajectory with an initial condition far from th
attractor. As the trajectory converged to the attractor,
moved through high density areas in a number of model

In chaotic key shift code cryptography a binary messa
signal st is used to modulate a chaotic transmitter betwe
two nearby parametrizations. To transmit the message on
the state variables is sent. The message signal is then
coded at the receiver through synchronization. Hypercha
chaotic systems are generally considered more secure s
the geometric structure of an attractor is more comp
@8,16–18#.

To illustrate this, the authors of Ref.@8# demonstrated an
unmasking technique in the frequency domain which fai
for the unidirectionally coupled Lorenz system. The equat
of state of the coupled Lorenz systems was given by

u̇15216~u12v1!,

v̇1545.6u12v1220u1w1 ,

ẇ155~0.9u110.1u2!v12bw1 ,

u̇25216~u22v2!,

v̇2545.6u22v2220u2w2 ,

te

FIG. 3. Weighted density of state models broke a chaotic
shift code with a unidirectionally coupled Lorenz system as
transmitter.~a! The transmitted signal.~b! The average density of a
200-point~2 s! reconstructed trajectory segment compared aga
two weighted density of state models.$b%5$4.0% and $b%5$4.4%
are denoted by gray and black lines, respectively.~c! The recovered
~black line! binary message signalst8 found with maximum likeli-
hood. The message signalst ~dotted line! is included for compari-
son.
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w2̇55u2v22bw2 , ~6!

where binary 0 and 1 were represented by the paramet
tions p05$b%5$4.0% andp15$b%5$4.4%, respectively, with
a clock rate of 10 s. The state variableu1 was sent as the
transmission signal. This hyperchaotic system was chose
demonstrate the ability to detect chaotic switching betw
nearby parametrizations in higher dimensional systems.

The test signalyt with initial conditions$1,1,3,1,1,3% and
tP@0,80# was taken as the scalar time seriesu1 sampled at
Ds5100 samples per second where the binary message
to an alternating sequence ofp0 and p1’s. The last 25 000
points of u1 from tP@0,260#, with initial conditions
$3,1,k,3,1,k%, k51,2, . . .,10, and the reconstruction param
eterst57, n514, andk54 or h50.39, were used to creat
g

.
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a weighted density model for each parametrizationp0 and
p1, using Eq.~1! the density at each point along the te
trajectory for each model was calculated. The moving av
age density is shown in Fig. 3~b!. The result of the maximum
likelihood approximation,st8 , is shown in Fig. 3~c!. Since a
reconstruction state space point can contain time series in
mation from both attractors, the estimation of the time of t
switching event tended to be blurred but generally near
actual switching time. Despite this, the hidden messag
reliably intercepted.

The detection and classification of chaotic switchi
events is an important aspect of understanding nonstatio
nonlinear systems. Many industrial, medical, and electro
applications rely on the detection of these changes in n
real time. The methodology presented here is intended
tool suitable for detecting such changes.
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